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Abstract

Large Language Models (LLMs) have recently shown suc-
cess across a range of social tasks, raising the question of
whether they have a Theory of Mind (ToM). Research into
this question has focused on evaluating LLMs against bench-
marks, rather than testing for the representations posited by
ToM. Using a cognitively-grounded definition of ToM, we
develop a new evaluation framework that allows us to test
whether LLMs have a mental causal model of other minds
(ToM), human-like or not. We find that LLM social reasoning
lacks key signatures expected from a causal model of other
minds. These findings suggest that the social proficiency ob-
served in LLMs is not the result of a ToM.
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Introduction
Large Language Models (LLMs) are not only proficient lan-
guage users, but also social reasoners. They can infer indi-
rect meanings in language (Hu et al. 2022), make simple
moral judgments (Almeida et al. 2024), and plan coopera-
tive behavior (Guo et al. 2024; Shen et al. 2024). In humans,
these capacities rely on Theory of Mind (ToM) (Rubio-
Fernandez, Berke, and Jara-Ettinger. in press; Young et al.
2007; Ullman et al. 2009), raising the question of whether
this capacity has spontaneously emerged in LLMs.

Research into LLM ToM shows conflicting results, with
some work showing remarkable successes (Kosinski 2023),
and other revealing striking brittleness (Ullman 2023). Here
we offer a new proposal for testing LLM ToM that moves
away from traditional benchmarking approaches, focusing
instead on the defining internal representations that consti-
tute ToM.

In cognitive science, ToM is defined as a causal model of
how mental states produce behavior, which we can use to
predict action given mental states and invert to infer mental
states from action (Gopnik and Meltzoff 1997). In humans,
the forward model (mental states to actions) is structured
around a principle of rational planning (Gergely and Csibra
2003; Jara-Ettinger et al. 2016), and the inferences (actions
to mental states) invert the forward model via Bayesian in-
ference (Baker et al. 2017).

The cognitive definition of ToM reveals two critical con-
siderations. First, there is not one but many ToMs. The

causal model used to explain behavior is different in chil-
dren and adults (Onishi and Baillargeon 2005; Wellman and
Liu 2004), it is different between human and non-human pri-
mates (Martin and Santos 2016; Rosati, Santos, and Hare
2010), and shows some variability across cultures (Yu and
Wellman 2024; Liu et al. 2008). In the same way, LLMs
might have their own emergent ToM – one that differs from
human ToM and therefore might be missed by benchmark-
ing tests. Second, because action predictions and mental-
state inferences result from forwards and backwards outputs
of the same causal model, they are fundamentally linked and
should be coherent given corresponding inputs. As such, we
propose to test for LLM ToM using parametrically varying
scenarios to examine the coherence between its action pre-
dictions and mental-state inferences.

Figure 1: An instance of ContainerWorld with an apple in
the box and an orange in the basket.

Evaluation Method
Fig. 2 shows our approach. We construct a simple paradigm
that allows us to enumerate all the possible beliefs, desires,
and world states of an event, and query the LLM for an ac-
tion prediction – i.e., mapping its forward model (Fig. 2A).
We then use the forward model as a likelihood function to
infer mental states from action, and compare these expected
inferences from ToM to the ones directly produced by the
LLM.

Our paradigm, ContainerWorld, is shown in Fig. 1. A
character always begins next to a closed box, with a cov-
ered basket fifty steps away. Each container will have ei-
ther apples, oranges, or both (apples and oranges) S ∈
{apples, oranges, apples and oranges}. The agent has de-
sires D ∈ {likes, dislikes} towards apples and oranges
(excluding the configuration where the agent dislikes both
fruits), and beliefs about the contents of each container,
B ∈ {apples, oranges, apples and oranges}.

We transcribe ContainerWorld into prompts, and query
an LLM to predict which container the agent will move to,



(A) Map the LLM's forward model (B) Use (A) to predict ToM inferences (C) Map the LLM's mental-state inferences
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Figure 2: For each pairing of relevant B,D,S,A, we query the LLM for a distribution over predictions (2A) and mental states
(2C). Additionally, we compute the predicted inference under a Bayesian inversion, using the distributions provided in (2B).

A ∈ {box, basket}, for the full configuration of states, be-
liefs, and desires (9 × 9 × 3). We use the distribution over
next tokens as the LLM’s likelihood of the action.

We then test if an LLM’s forward model predicts its
mental-state inferences from action (regardless of its agree-
ment with human intuitions). Specifically, we test for
prediction-inference agreement across three mental-state in-
ference tasks: desire inference, belief inference, and joint
belief-desire inference (Fig. 2C). In each case, we compute
the predicted inference under a Bayesian inversion of the
forward model (Fig. 2B), take the expected posterior (as hu-
mans do; Baker et al. 2017), and compare it to the token
likelihood extracted directly from the LLM (Fig. 2C) – the
“Bayesian” evaluation. It is also possible that an LLM is re-
lying on forward model expectations to produce inferences,
but not in a Bayesian way. We therefore also consider a more
generous evaluation metric: a mental-state inference is con-
sistent if, when used as input to the forward model F , it
produces the target action to be explained – the “validity”
evaluation. This is a generous metric because, for any action,
there is a large space of possible inputs that can generate it.

Results
We evaluate our approach using gpt-4o-2024-05-13
(GPT-4o). In our “Bayesian” evaluation, we expect that a
GPT-4o’s direct estimates will highly, positively, correlate
with its Bayesian inversion – instead, we find that its mental-
state inference estimates do not positively correlate with its
Bayesian inversion (Fig. 3A). In our “validity” evaluation,
we would expect that the forward model F and each in-
ference model I would fully agree – instead, we find that
GPT-4o’s prediction and inference models agree more often
than not (Fig. 3B).

To ensure that these results are not because Contain-
erWorld is unusually a challenging domain for ToM in
GPT-4o, we constructed a logically equivalent paradigm
MovieWorld and repeated our evaluation scheme. We
find similarly low correlations in our “Bayesian” eval-
uation (DI: r = .57, 95% CI [.49, .63]; BI: r =
.03, 95% CI [−.05, .12]; BDI: r = .13, 95% CI [.03, .12]).
In our “validity” evaluation, we find striking agreement in
MovieWorld ( DI: 83.5%; BI: 81.1%; BDI: 88.9% ).

The overall low correlations in our “Bayesian” evalua-
tion and high agreements in our “validity” evaluation illus-
trate that GPT-4o’s action predictions (from mental states)
are unrelated to its mental-state inferences (from actions). It
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Figure 3: GPT-4o’s coherence under the Bayesian approach
(3A), percentage of actions produced by the mental-state in-
ference (3B), and coherence in GPT-4o’s predictions across
all tasks in two logically-equivalent domains (3C).

is possible, however, that GPT-4o does not re-use the for-
ward model for inference, but still learn a global forward
and inference model that is context independent. To test this,
we evaluated whether GPT-4o produced consistent behavior
across the two logically equivalent paradigms, comparing
the forward models in ContainerWorld to MovieWorld, and
the inferences in all three tasks. Fig. 3C shows that, despite
their equivalence, GPT-4o’s behavior shows no consistency
across tasks.

Discussion

This work makes three contributions. First, we propose a
new way to test for LLM ToM that moves away from bench-
marking metrics, to testing for the representational signa-
tures of ToM. This approach can differentiate social mimicry
(high benchmark performance with no ToM representations)
from non-human forms of ToM (low benchmark perfor-
mance, but internal coherence pointing to ToM representa-
tions). Second, we show that GPT-4o lacks coherence be-
tween forward and inverse mappings. This contrasts with
the representations posited in ToM, which involve a causal
model that is used to both predict and interpret others’ be-
havior. Third, we show that GPT-4o’s action predictions
and mental-state inferences were not consistent across two
logically-equivalent tasks. This suggests that GPT-4o lacks
a coherent set of agent expectations that transfers across do-
mains. In future work we plan to evaluate other LLMs.
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Evaluation Paradigms
In our evaluations, we need tractably enumerable paradigms
which are capable of eliciting rich ToM inferences. To this
end, we develop two logically equivalent domains: Contain-
erWorld and MovieWorld as case-studies. Furthermore, we
need domains which support parametric prompt construc-
tion to map the forward model F and each mental-state in-
ference I.

Figure 4: An instance of ContainerWorld with an apple in
the box and an orange in the basket.

ContainerWorld
ContainerWorld (Fig. 4) has a character that spawns
in the south-west corner of a room. This room has a
closed box next to the character and a covered bas-
ket in the opposite corner, “about 50 fifty steps away”.
Containers may hold either apples, oranges, or both (ap-
ples and oranges) and thus have a state-space S =
{apples, oranges, apples and oranges}. Due to the partial
observability, the character has beliefs about the con-
tents of each container, such that for each container
B = {apples, oranges, apples and oranges}. Additionally,
the character has desires, D = {likes, dislikes} towards
both apples and oranges. The character may take actions
A = {box, basket}, which entails moving to a container and
taking the contents within.

dt=00 55 1010 8585 9090 9595⋯

Figure 5: An instance of MovieWorld with an action movie
in 5 minutes and romance movie in 90 minutes.

MovieWorld
MovieWorld (Fig. 5) has a character at a foreign film festi-
val, thus has difficulty communicating with others. At this
film festival, there are two screenings coming up – one start-
ing in 5 minutes and another starting in 90 minutes. Movies
screened at this festival are 120 minutes (2 hours) long. The
movies’ genres are S = {action, romance, action-romance}.
As a partially observable world, too, the character has beliefs
about which movies are playing when such that for each



screening B = {action, romance, action-romance}. Simi-
larly, the character has desires D = {likes, dislikes} to-
wards both action and romance movies. Lastly, the character
may take actions A = {05, 90}, which entails going to the
screening commencing in that amount of time.

(A) Example event-configuration for an Action
Prediction (AP)

Desires Beliefs States Action

→
(B) Example event-configuration for a Desire

Inference (DI)

Desires Beliefs States Action

←

Figure 6: A human-like ToM action-prediction and desire
inference set in the ContainerWorld.

(A) Example event-configuration for an Action
Prediction (AP)

Desires Beliefs States Action

→
(B) Example event-configuration for a Desire

Inference (DI)

Desires Beliefs States Action

←

Figure 7: A non-human-like-ToM inference set in the Con-
tainerWorld. Traditional ToM evaluations would character-
ize this as a failure in both action prediction and mental-state
(desire) inference. Under our approach, this is characterized
as a success because the action prediction 7A is coherent
with the mental-state inference 7B, conversely, the desire in-
ference coheres with the action prediction.

Large Language Models
We tested this evaluation scheme using GPT-4o via the
OpenAI API – using the openai package. We used the
gpt-4o-2024-05-13 version, using a temperature of 1,
and requesting the top 10 logprobs. Each prediction and in-
ference is a unique query to the LLM. Thus, if the action

predictions and desire inferences depicted in Figs. 6 and 7
were given to the LLM, we would issue four queries: two
for action prediction with the configuration on the left-hand
side (Figs. 6A and 7A) and two for desire inference with the
configurations on the right-hand side (Figs. 6B and 7B). Our
evaluation approach only works for LLMs which are able
to return log-probabilities over next-token predictions, thus
LLMs like Claude-3.5 are unable to be evaluated at this time.

LLMs are given a “system prompt” and a “user prompt”.
The “system prompt” details the goal and response format.
While the “user prompt” presents the story describing the
world structure and the “belief-state-desire-action” tuple rel-
evant for the prediction or inference.

Mapping the Forward Model F and
Mental-State Inferences I

To map the forward model F and mental-state inferences I,
we translate ContainerWorldand MovieWorld into prompts.
We then query the LLM, GPT-4o in the current work, with
each prompt and use the distribution over next tokens as the
likelihood of the action prediction and mental-state infer-
ence for each task. Below, we describe our prompting setup
and how we extract the likelihoods from the next-token dis-
tribution.

Parametric Prompt Construction

Each of our paradigms have beliefs B, desires D, states
S, and actions A. As illustrated in Fig. 2A, enumerating
the forward-model entails creating a permutation of B,D,S
to query the LLM. Similarly, as in Fig. 2C, enumerating
each mental-state inference entails creating a permutation
of B,S,A for desires, D,S,A for beliefs, and S,A for
belief-desire inferences. Each enumeration consists of two
prompts: the “system” prompt and the “user” prompt.

The “system” prompt is depicted in Fig. 8A – the {{
task }} is tied to the action prediction and mental-state
inference task (Fig. 8B), while {{ schema }} is derived
from the task and paradigm. The {{ schema }} is a
JSON-serialization mapping each input to the unique con-
stituents of B,D,S,A. In Fig. 8C, we show the schema
which informs an LLM what to respond with for desire infer-
ences in ContainerWorld. Similarly, in Fig. 8D, we should
the schema for belief inferences in MovieWorld. We use
schemas like these for each prediction and inference task to
maximize response structure and minimize extraneous text-
generation.

The “user” prompt (Fig. 9A) is a concatenation of a “con-
text” (background details framing the paradigm), the predic-
tion or inference inputs, and a “query” for the paradigm out-
put(s). The “query” is both task- and paradigm-dependent,
while “context” and the other inputs only vary across
paradigms. The prompt components for ContainerWorld and
MovieWorld are detailed in Fig. 9B and Fig. 9C, respec-
tively. We provide a full example prompt construction in
Figs. 10 and 11.



(B) Text Replacements for {{ task }} in (A)(A) “System” Prompt given to LLM
{{ schema }} is both task- and paradigm-dependent.

Task Content

AP the action someone you’re observing would
take

DI the desires of someone you’re observing

BI the beliefs of someone you’re observing

BDI the beliefs and desires of someone you’re
observing

Your task is to tell us {{ task }} using the JSON
Schema provided below.

{{ schema }}

(C) Abbreviated {{ schema }} for DI in ContainerWorld (D) Abbreviated {{ schema }} for BI in MovieWorld

{
  "desires": {
    "apples": {
      "type": "string",
      "enum": [
        "likes",
        "dislikes"
      ]
    },
    "oranges": {
      "type": "string",
      "enum": [
        "likes",
        "dislikes"
      ]
    }
  }
}

{
  "beliefs": {
    "screening05": {
      "type": "string",
      "enum": [
        "action",
        "romance"
      ]
    },
    "screening90": {
      "type": "string",
      "enum": [
        "action",
        "romance"
      ]
    }
  }
}

Figure 8: System Prompt: In 8A, we illustrate the prompt template used across ContainerWorld and MovieWorld. {{ task
}} is replaced with the content shown in 8B, based on the current task. In 8C and 8D, we illustrate example schemas used for
desire and belief inferences.

Mapped Distribution Construction
While LLMs are able to assign a likelihood to their pre-
dictions by text, a more direct measure is to use the likeli-
hood from the next-token distribution. We do this by search-
ing for the target of a given task and extracting their log-
probabilities.

Consider the example depicted in Fig. 10 – a joint belief-
desire inference set in ContainerWorld. The LLM’s re-
sponse will be JSON according with the schema shown
in Fig. 10A. We then search for the responses generated
for each of desires.apples, desires.oranges,
beliefs.box, and beliefs.basket. Once found, we
extract the token log-probabilities for the eligible values (de-
noted in the enum field of the schema) and normalize their
scores to create a distribution over eligible values, which be-
comes the likelihood function for each component. We note
that our current implementation overestimates the likelihood
of words which are tokenized into more than one token (e.g.,
“dislikes” tokenizes to [“dis”, “likes”]). However, we do not
believe this substantively impacts our findings as this short-
coming applies across all tasks and paradigms. Furthermore,
we find no substantive correlation between almost all action
prediction Bayesian inversions and mental-state inferences

(notably, DI in MovieWorld is moderately correlated).
The distributions retrieved in this way are used for both

evaluation measures: (1) if the mental-state inference pro-
duces the observed action is considered “valid” (the “valid-
ity” evaluation described earlier) and (2) the correlation of
the direct mental-state inferences with the Bayesian inver-
sion of the forward model F (the “Bayesian” evaluation de-
scribed earlier).



(A) “User” Prompt given to LLM
Each component below is paradigm-dependent. query is both task- and paradigm-dependent.

AP: context ⧺ beliefs ⧺ desires ⧺ states ⧺ query DI: context ⧺ beliefs ⧺ states ⧺ actions ⧺ query

BI: context ⧺ desires ⧺ states ⧺ actions ⧺ query BDI: context ⧺ states ⧺ actions ⧺ query

(B) ContainerWorld (C) MovieWorld

Component Content

context
John is standing in the corner of a large
room.

beliefs
John believes that the closed box has ℬ
and that the covered basket has ℬ.

desires John 𝒟 apples and he 𝒟 oranges.

states

Within arm’s reach, there is a closed
box. The closed box is filled with 𝒮 . In
the opposite corner, about fifty steps
away, there is a covered basket. The
covered basket is filled with 𝒮 .

actions
John wants to eat fruit, so he goes to the
𝒜 and takes the fruit inside.

query AP:
He wants to eat a single piece
of fruit. Which container
would John take fruit from?

query DI: What are John’s desires?

query BI: What are John’s beliefs?

query BDI: What are John’s beliefs and
desires?

Component Content

context

Alex is at a foreign film festival. He has
a surface-level understanding of the
local language, but doesn’t know
enough to be conversational. This film
festival only screens movies which are
120 minutes long.

beliefs

Alex believes that the screening starting
in 5 minutes is ℬ movie and that the
screening starting in 90 minutes is ℬ
movie.

desires
Alex 𝒟 action movies and he 𝒟
romance movies.

states
There is 𝒮  movie starting in 5 minutes
and 𝒮  movie starting in 90 minutes.

actions
Alex wants to watch a screening, so he
goes to the screening starting in 𝒜
minutes.

query AP:
He wants to watch a movie.
Which screening should Alex
go to?

query DI: What are Alex’s desires?

query BI: What are Alex’s beliefs?

query BDI: What are Alex’s beliefs and
desires?

Figure 9: User Prompt: In 9A, we show the component-definition of the user prompt template. For action-prediction (F),
we would use the “context”, “beliefs”, “desires”, “states”, and the “query” for AP (action prediction). These values are then
concatenated to form a prompt which an LLM is then expected to respond to according to the {{ schema }} specified in the
system prompt (Fig. 8A). We detail the specifics for ContainerWorld in 9B and for MovieWorld in 9C.



Example prompt pair for ContainerWorld on BDI
We color variadic replacements based on their component

(A) “System” Prompt

Your task is to tell us the beliefs and desires of
someone using the JSON Schema provided below.

{
  "desires": {
    "apples": {
      "type": "string",
      "enum": [
        "likes",
        "dislikes"
      ]
    },
    "oranges": {
      "type": "string",
      "enum": [
        "likes",
        "dislikes"
      ]
    }
  },
  "beliefs": {
    "box": {
      "type": "string",
      "enum": [
        "apples",
        "oranges"
      ]
    },
    "basket": {
      "type": "string",
      "enum": [
        "apples",
        "oranges"
      ]
    }
  }
}

(B) “User” Prompt

John is standing in the corner of a large room.
Within arm’s reach, there is a closed box. The
closed box is filled with apples . In the opposite
corner, about fifty steps away, there is a covered
basket. The covered basket is filled with apples .
What are John’s beliefs and desires?

Figure 10: An example prompt pairing for ContainerWorld
on the belief-desire inference (BDI) task.

Example prompt pair for MovieWorld on BDI
We color variadic replacements based on their component

(A) “System” Prompt

Your task is to tell us the beliefs and desires of
someone using the JSON Schema provided below.

{
  "desires": {
    "action": {
      "type": "string",
      "enum": [
        "likes",
        "dislikes"
      ]
    },
    "romance": {
      "type": "string",
      "enum": [
        "likes",
        "dislikes"
      ]
    }
  },
  "beliefs": {
    "screening05": {
      "type": "string",
      "enum": [
        "action",
        "romance"
      ]
    },
    "screening90": {
      "type": "string",
      "enum": [
        "action",
        "romance"
      ]
    }
  }
}

(B) “User” Prompt

Alex is at a foreign film festival. He has a surface-
level understanding of the local language, but
doesn’t know enough to be conversational. This
film festival only screens movies which are 120
minutes long. There is a romance movie starting in
5 minutes and an action-romance movie starting in
90 minutes. What are Alex’s beliefs and desires?

Figure 11: An example prompt pairing for MovieWorld on
the belief-desire inference (BDI) task.


